

Venin de la Fourmi *Tetramorium bicarinatum* : Découverte d'une Nouvelle Famille de Neurotoxines Insecticides

Axel Touchard ¹, Valentine Barassé ¹, Laurence Jouvensal ^{2,3}, Guillaume Boy ¹, Arnaud Billet ¹, Steven Ascoët ¹, Benjamin Lefranc ⁴, Jérôme Leprince ⁴, Alain Dejean ^{5,6}, Virginie Lacotte ⁷, Isabelle Rahioui ⁷, Catherine Sivignon ⁷, Karen Gaget ⁷, Mélanie Ribeiro Lopes ⁷, Federica Calevro ⁷, Pedro Da Silva ⁷, Karine Loth ^{2,3}, Françoise Paquet ², Elsa Bonnafé ¹, Michel Treilhou ¹

Contexte

- Les fourmis sont des prédateurs majeurs d'invertébrés terrestres.
- **❖** Pour capturer leurs proies, les fourmis utilisent un venin neurotoxique dont les toxines ont été peu explorées.
- La fourmi Tetramorium bicarinatum possède un venin composé de 37 peptides. a
- **Ces 37 peptides ont été classés dans 17 familles biochimiques (U₁-U₁₇) dont nous cherchons désormais à caractériser la fonction biologique.**

Objectif: identifier les peptides neurotoxiques et potentiellement insecticides du venin de *T. bicarinatum* impliqués dans la paralysie des insectes proies.

U₁₁ a montré une forte activité paralytique par <u>injection</u>

Table 1 : L'effet paralytique de neufs peptides synthétiques du venin de *T. bicarinatum* a été testés par injection intrathoracique sur la mouche *Lucilia caesar*.

Peptide	Sequence	MW #	Injected Dose [¥]
$\overline{U_2}$	DPPPGFIGVR *	1052.6	103 nmol. g^{-1}
U_4	GCSQFRRMRNLCG *	1523.7	68 nmol. g^{-1}
U_7	AINCRRYPRHPKCRGVSA	2081.1	52 nmol. g^{-1}
U_8	GMLDRILGAVKGFMGS	1650.9	54 nmol. g^{-1}
U_{10}	GLGFLAKIMGKVGMRMIKKLVPEAAKVAVDQLSQQQ	3882.2	28 nmol. g^{-1}
U_{11}	GKEKEKLKQCFKDMTLAAIDYAKHKVEKHLFKCI	4018.1	27 nmol. g^{-1}
U_{13}	RPPQIGIFDQIDKGMAAFMDLFK *	2636.4	45 nmol. g^{-1}
U_{14}	IPPNAVKSLQ *	1064.6	95 nmol. g^{-1}
U_{15}	VFLTPDQIKAMIKRH *	1795.0	48 nmol. g^{-1}

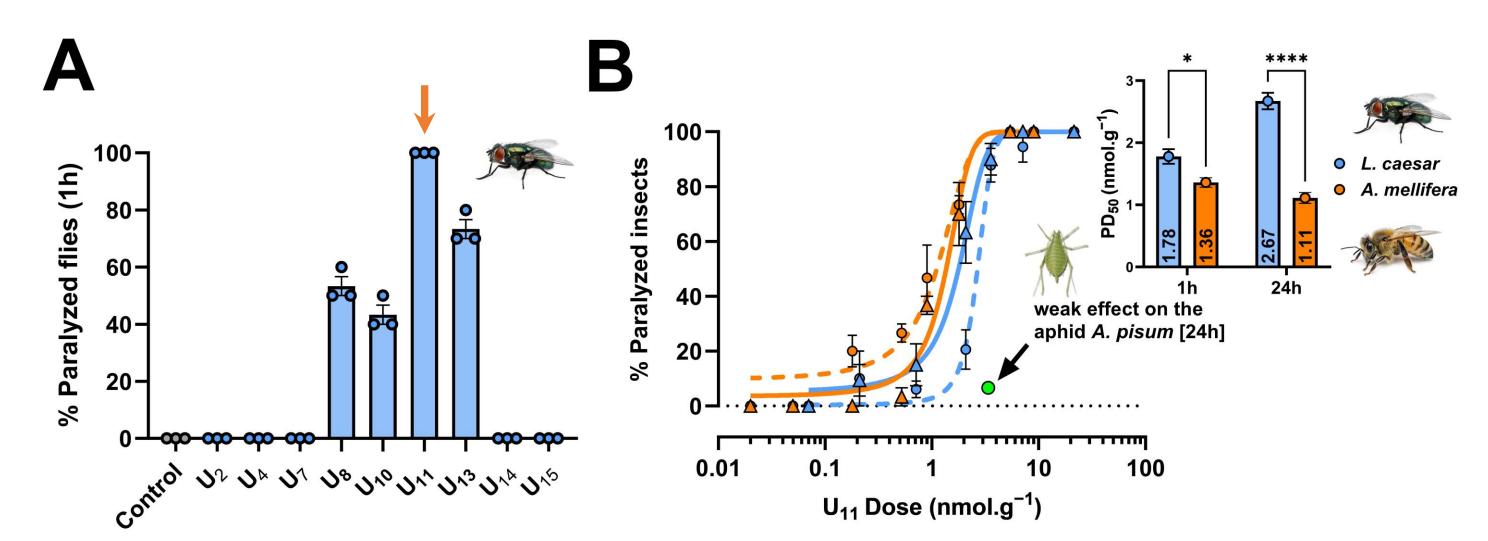


Figure 1 : (A) Neuroactivité des peptides de venin par injection contre la mouche L. caesar. (B) Courbes doses-réponses du peptides U_{11} sur la mouche L. caesar et sur l'abeille Apis mellifera. U_{11} semble peu actif sur le puceron Acyrthosiphon pisum.

Le peptides U_{11} a été sélectionné afin de déterminer son mode d'action, sa structure et son potentiel d'application agronomique.

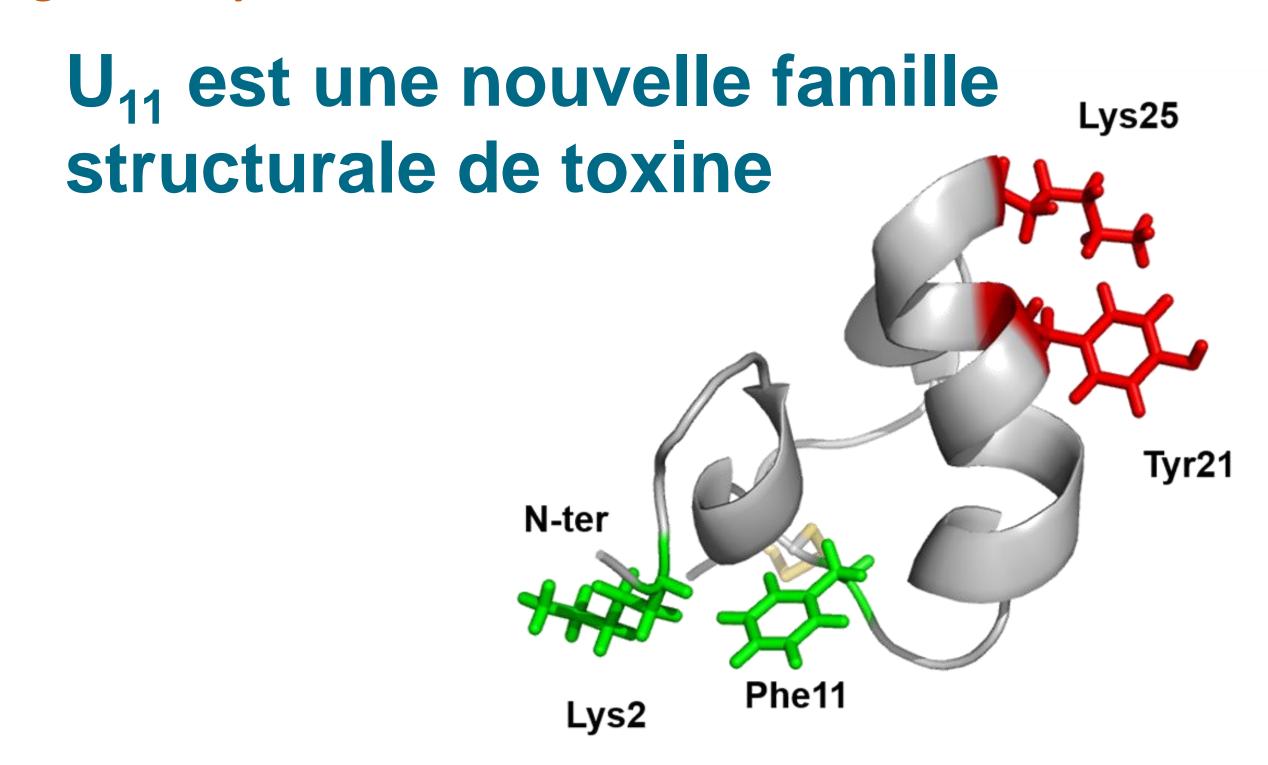


Figure 3 : Représentation cartoon de la structure RMN de U₁₁. L'analyse de la structure révèle deux diades fonctionnelles dont les chaines latérales sont représentées en vert et en rouge sur la structure.

 U_{11} est un peptide triangulaire, possédant trois hélices. Cette structure originale porte deux diades fonctionnelles potentielles qui sont connues pour interagir avec les canaux potassiques b .

U₁₁ est une neurotoxine insecticide après <u>ingestion</u>

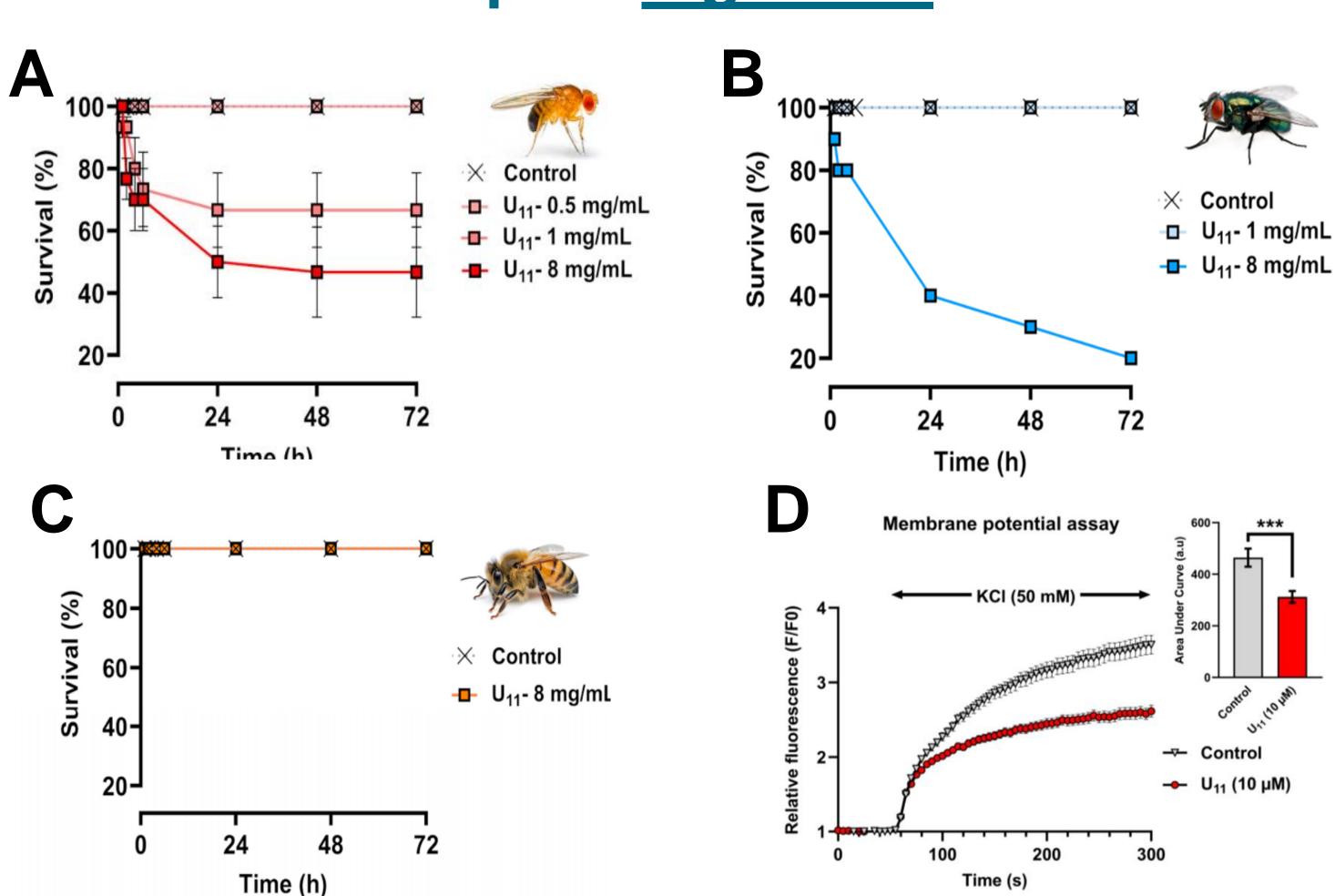


Figure 2 : (A-B) Le peptide U_{11} est actif par ingestion contre les deux espèces de diptères (*Drosophila melanogaster* et *L. caesar*). (C) U_{11} n'affecte pas les abeilles, ni les pucerons et les charançons (D) U_{11} diminue de façon significative la dépolarisation par le KCl.

Les expériences d'ingestion et pharmacologiques suggèrent que U_{11} est une neurotoxine insecticide qui module des canaux potassiques

Conclusion

- **❖** U₁₁ est un peptide neuroactif original qui provoque, par injection, une paralysie irréversible chez les mouches et les abeilles.
- **❖** Par ingestion, U₁₁ apparait comme une toxine insecticide affectant sélectivement les diptères. Les insecticides peptidiques sont biodégradables.
- ❖ Nos données pharmacologiques et structurelles convergent vers la modulation possible de canaux potassiques.
- **❖** De futures études d'électrophysiologie vont être conduites pour élargir la description pharmacologique de U₁₁.
- D'autres peptides font l'objet d'une maturation entre notre laboratoire, la SATT Occitanie et un industriel, en vue d'un développement d'insecticides.

7 INRAE, INSA de Lyon, UMR 203 (BF2i), Université de Lyon, Villeurbanne, France

6 UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France