Three years monitoring of pesticides mitigation with an artificial wetland receiving agricultural drained flow at catchment scale

J. Tournebize^{*1}, C. Chaumont¹, F. Birmant², Ü. Mander^{1,3}

1 Irstea, France 2 AQUI'Brie, France 3 University of Tartu, Estonia

60% OF THE RECHARGE IS DUE TO DIRECT INFILTRATION FROM SURFACE WATER TO GROUNDWATER (SINKHOLES)

Objectives of the RAMPILLON project

PROTECT GROUNDWATER FROM PESTICIDE CONTAMINATION IN A TOTALLY DRAINED WATERSHED OF 400HA

Propose and test a methodology on an example to be reproduced for the whole Champigny Hydrosystem

Selected Objective: PESTICIDES MITIGATIONS from Agricultural Land by 1) Reduction of 50% of total pesticide applied amount and secondly reduction Nitrate pollution

2) Support for Implementation of Artificial WETLANDS

Involvement of all the stakeholders:

- Water Agency: Water Framework Directive
- Local authority: Drinkable water to citizens at a lowest treatment as possible
- Farmers: Food production
- And Scientists: Improve knowledge and provide solutions, tools ...

irstea

Aerial Sight of the watershed

PROTECT GROUNDWATER FROM PESTICIDE CONTAMINATION IN A TOTALLY DRAINED WATERSHED OF 400HA

After land reclamation, all buffering systems disappeared

Objectives of the RAMPILLON project

Tournebize et al., 2012

irstea

→ When involving a group of farmers, the process takes a long time!!

Ecological trajectory: Vegetation (macrophytes)

Sedge (Carex) - Reed (Phragmites australis) – Cattail (Typha latifolia) – Bulrush (Juncus) – Algae 80% vegetation cover in 2012 – 20% vegetation cover in 2013 – 50% vegetation cover in 2015

Catchment OUTLET

- Continuous discharge monitoring (30min)
- Weekly Grab Sampling for pesticides and nitrate

Monitoring Strategy

Coupling high frequency monitoring (Q, R, ET, SM, NO³) Weekly flow weighted sampling

AW OUTLET

- Outlet Flow Control
- Continuous discharge and nitrate concentration monitoring (30min)
- Weekly Grab Sampling for pesticides and nitrate

Artificial WETLAND: Surface = 1ha (Ratio: 0.15%) Volume = 2400 m³ Eddy tower Ditch from 400ha catchment

AW INLET

- Input Flow Control (OPEN /CLOSE Strategy)
- Raingauge
- Continuous discharge and nitrate concentration monitoring (30min)
- Weekly Grab Sampling for pesticides and nitrate

Hydrological Results

irste

Hydrological Description	2012/13 & 2013/14	2014/2015
Proportion Winter / Other seasons	85/15%	80/20%
Opening days of inlet gate	235 days	365 days
Intercepted volume	11%	67%
Water losses	4%	6%
Representativity of sampling strategy	80%	94%

Distribution of hydraulic residential time

Hydraulic Residential Time strongly depends on watershed hydrological response:

- irstea
- short in winter (less than 1 day)
- longer during other seasons (between 2 and 100 days)

Pesticides results

76 molecules applied every year (1.71kg of active molecules per ha) \rightarrow About 64 analysed (84%) :

- ightarrow 27 non detected ; 38 molecules detected > LQ
- ightarrow 6 non applied but detected such as atrazine

Pesticides exportation from drained area

In average, about 1,5g of exported pesticides per hectare, corresponding to less than 0,1% of applied amount at crop field in subsurface drainage context

Distributed as more thant 70% for herbicides (including some metabolites), end secondly fungicides

Pesticides removal efficiency within the artificial wetland

Herbicides (cumulés)

Driven factors for pesticides removal efficiency?

HIGH VARIABILITY ACCORDING TO MOLECULES

Any clear evidence of efficiency depending on pesticides properties

Strong sorption, low DT50 seem to increase efficiency

BUT

Season (temperature), pH and HRT should also have a real influence

Pesticides removal efficiency ranking

Inefficient	10 → 20%	20 → 40%	40 → 60%	$60 \rightarrow 100\%$
Mesotrione	Cyproconazole	Clopyralid	Clomazone	2,4-D
Imazamox	Imidaclopride	Bentazone	Aclonifen	Benoxacor
Chlortoluron	Atrazine déséthyl	Metamitrone	Dimethenamide	Chlorméquat
Ethofumesate	Mesosulfuron mtl	Chloridazone	Atrazine	Triflusulfuron mtl
Fluroxypyr	Isoproturon	Florasulam	S-metolachlor	Ethephon
2,4-MCPA	AMPA	Boscalid	Azoxystrobine	Napropamide
Dimetachlore Nicosulfuron Propyzamide Should these results influencing farmers' pesticides choices and practices?		Diflufenican	Tebuconazole	
		Nicosulfuron	Lenacile	Epoxyconazole
		Glyphosate	Pendimethaline	
		Propiconazole	Fluoxastrobine	
		Quinmerac	Métazachlor	

Take Home Message

- The 3 years monitoring of artificial wetland showed
 - 1) High potentiel for Pesticides removal
- 2) High variability of removal efficiency according to pesticides
- →It is not a 100% warranty solution, important to accept variability
- 3) The crucial knwoledge of pollutant water dynamic upstream (hydrological diagnosis)
- 4) Water and Hydraulic residential time management influence deeply the removal efficiency: IN STREAM strategy should be recommended
- 5) Still question about pesticide accumulations and metabolites???

The monitoring provides a set of data, useful for designing the future artificial wetland according to the water quality objective

Thank you for your attention